博士生导师

刘勇

  • 个人简介

    江苏江阴现任必威betway东盟体育教授

    研究兴趣

    主要研究具有几何或物理背景的椭圆型偏微分方程,如Allen-Cahn方程、KP方程、Ginzburg-Landau方程等。

    主讲课程

    复变函数论》,《数学分析》等

    学习经历

    1998年9月-2002年7月,四川大学数学系,本科;

    2002年9月-2007年7月,北京大学数学科学学院,硕博连读。

    工作经历

    2007年7月-2018年10月,华北电力大学(北京)数理学院,讲师、副教授;

    2008年9月-2011年9月,智利大学数学中心,博士后;

    2018年11月-2024年9月,中国科学技术大学数学科学学院,教授;

    2020年1月-2021年12月,中国科学院学部工作局,处长助理、副处长;

    2024年9月-至今,必威betway东盟体育,教授。

    主要科研项目

    主要有:

    1. 国家自然科学基金面上项目,KP方程与Toda晶格相关问题的研究,2025,主持;

    2. 国家自然科学基金面上项目,Gross-Pitaevskii方程及Ermakov系统相关问题的研究,2020,主持

    3. 国家自然科学基金青年项目,从Scherk曲面到Allen-Cahn方程的整体解,2012,主持;

    4. 科技部国家重点研发计划(子课题),Monge-Ampere方程,Allen-Cahn方程及极小曲面,2022,参与;

    5. 国家自然科学基金专项项目,几何非线性椭圆偏微分方程,2022,参与;

    6. 科技部国家重点研发计划(子课题), 非线性偏微分方程及应用,2020,参与。


    主要学术成果

    [1] Y. Liu, J. Wei, W. Yang, Lump type solutions: Bäcklund transformation and spectral properties, Physica D: Nonlinear Phenomena 470 (2024) 134394.

    [2] W. Liang, Y. Liu, J. Yang, From Liouville equation to lump solutions of the 2+1 Toda lattice, Journal of Differential Equations 411 (2024) 478–505.

    [3] Y. Liu, Y. Zhang, Fence of saddle solutions of the Allen–Cahn equation in the plane, Proceedings of the Royal Society of Edinburgh: Section A Mathematics (2024) 1–42.

    [4] Y. Liu, J. Wei, W. Yang, Uniqueness of lump solution to the KP‐I equation, Proceedings of London Math Soc 129 (2024) e12619.

    [5] L. Cui, Y. Liu, C. Wang, J. Wang, W. Yang, The Einstein-scalar field Lichnerowicz equations on graphs, Calc. Var. 63 (2024) 138.

    [6] Y. Liu, K. Wang, J. Wei, K. Wu, On Dancer’s conjecture for stable solutions with sign-changing nonlinearity, Proc. Amer. Math. Soc. 152 (2024) 3485–3497.

    [7] Liu, Yong; Ma, Xi-Nan; Wei, Juncheng; Wu, Wangzhe, Entire solutions of the magnetic Ginzburg-Landau equation in R^4, The Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, accepted, https://doi.org/10.2422/2036-2145.202209_005

    [8] Liu, Yong; Tian, Jing; Yong, Xuelin, On the even solutions of the Toda system: a degree argument approach, Commun. Pure Appl. Anal. 21 (2022), no. 6, 1895–1916.

    [9] Liu, Yong; Wei, Juncheng, Classification of finite Morse index solutions to the elliptic sine-Gordon equation in the plane, Rev. Mat. Iberoam. 38 (2022), no. 2, 355–432.

    [10] Ao, Weiwei; Liu, Yong; Wei, Juncheng,  Clustered travelling vortex rings to the axisymmetric three-dimensional incompressible Euler flows, Phys. D 434 (2022), Paper No. 133258, 26 pp.

    [11] Liu, Yong; Wang, Kelei; Wei, Juncheng; Wu, Ke,  Qualitative properties of stable solutions to some supercritical problems, Electron. Res. Arch. 30 (2022), no. 5, 1668–1690.

    [12] Ao, Weiwei; Huang, Yehui; Liu, Yong; Wei, Juncheng, Generalized Adler-Moser polynomials and multiple vortex rings for the Gross-Pitaevskii equation, SIAM J. Math. Anal. 53 (2021), no. 6, 6959–6992.

    [13] Liu, Yong; Wang, Kelei; Wei, Juncheng, On smooth solutions to one phase-free boundary problem in R^n, Int. Math. Res. Not. IMRN (2021), no. 20, 15682–15732.

    [14] Hamel, François; Liu, Yong; Sicbaldi, Pieralberto; Wang, Kelei; Wei, Juncheng, Half-space theorems for the Allen-Cahn equation and related problems, J. Reine Angew. Math. 770 (2021), 113–133.

    [15] Liu, Yong; Wei, Juncheng, Multivortex traveling waves for the Gross-Pitaevskii equation and the Adler-Moser polynomials, SIAM J. Math. Anal. 52 (2020), no. 4, 3546–3579.

    [16] Chen, Guoyuan; Liu, Yong; Wei, Juncheng, Nondegeneracy of harmonic maps from R^2 to S^2, Discrete Contin. Dyn. Syst. 40 (2020), no. 6, 3215–3233.

    [17] Yong, Xuelin; Li, Xiaoyu; Huang, Yehui; Ma, Wen-Xiu; Liu, Yong, Rational solutions and lump solutions to the (3+1)-dimensional Mel'nikov equation, Modern Phys. Lett. B 34 (2020), no. 3, 2050033, 14 pp.

    [18] Liu, Yong; Wei, Juncheng, Nondegeneracy, Morse index and orbital stability of the KP-I lump solution, Arch. Ration. Mech. Anal. 234 (2019), no. 3, 1335–1389.

    [19] Liu, Yong; Wei, Juncheng, On the Helmholtz equation and Dancer's-type entire solutions for nonlinear elliptic equations, Proc. Amer. Math. Soc. 147 (2019), no. 3, 1135–1148..

    [20] Liu, Yong; Wei, Juncheng, Nondegeneracy of the traveling lump solution to the 2+1 Toda lattice, J. Math. Phys. 59 (2018), no. 10, 101501, 26 pp.

    [21] Liu, Yong; Wang, Kelei; Wei, Juncheng, On a free boundary problem and minimal surfaces, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 4, 993–1017.

    [22] Yong, Xuelin; Ma, Wen-Xiu; Huang, Yehui; Liu, Yong, Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source, Comput. Math. Appl. 75 (2018), no. 9, 3414–3419.

    [23]  Liu, Yong; Wang, Kelei; Wei, Juncheng, Global minimizers of the Allen-Cahn equation in dimension n≥8, J. Math. Pures Appl. (9) 108 (2017), no. 6, 818–840.

    [24] Gui, Changfeng; Liu, Yong; Wei, Juncheng, Two-end solutions to the Allen-Cahn equation in R^3, Adv. Math. 320 (2017), 926–992.

    [25] Gui, Changfeng; Liu, Yong; Wei, Juncheng,  On variational characterization of four-end solutions of the Allen-Cahn equation in the plane, J. Funct. Anal. 271 (2016), no. 10, 2673–2700.

    [26] Kowalczyk, Michał; Liu, Yong; Pacard, Frank; Wei, Juncheng, End-to-end construction for the Allen-Cahn equation in the plane, Calc. Var. Partial Differential Equations 52 (2015), no. 1-2, 281–302.

    [27] Kowalczyk, Michał; Liu, Yong; Wei, Juncheng, Singly periodic solutions of the Allen-Cahn equation and the Toda lattice, Comm. Partial Differential Equations 40 (2015), no. 2, 329–356.

    [28] Kowalczyk, Michał; Liu, Yong; Pacard, Frank, Multiple end solutions to the Allen-Cahn equation in R^2, Éditions de l'École Polytechnique, Palaiseau, 2014, Exp. No. X, 19 pp. ISBN: 978-2-7302-1633-3.

    [29] Kowalczyk, Michał; Liu, Yong; Pacard, Frank, The classification of four-end solutions to the Allen-Cahn equation on the plane, Anal. PDE 6 (2013), no. 7, 1675–1718.

    [30] Kowalczyk, Michał; Liu, Yong; Pacard, Frank, Towards classification of multiple-end solutions to the Allen-Cahn equation in R^2, Netw. Heterog. Media 7 (2012), no. 4, 837–855.

    [31] Kowalczyk, Michał; Liu, Yong; Pacard, Frank, The space of 4-ended solutions to the Allen-Cahn equation in the plane, Ann. Inst. H. Poincaré C Anal. Non Linéaire 29 (2012), no. 5, 761–781.

    [32] Kowalczyk, Michał; Liu, Yong, Nondegeneracy of the saddle solution of the Allen-Cahn equation, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4319–4329.

    [33] Liu, Yong, Even solutions of the Toda system with prescribed asymptotic behavior, Commun. Pure Appl. Anal. 10 (2011), no. 6, 1779–1790.

    [34] Liu, Yong, Morse homology of super-quadratic Hamiltonian systems on R^{2n},J. Math. Anal. Appl. 344 (2008), no. 1, 384–407.

    [35] Liu, Yong; Jiang, Mei-Yue, Periodic bounce solutions of Hamiltonian systems in bounded domains, Adv. Nonlinear Stud. 7 (2007), no.4, 533–550.